mod addressing; mod syntactic_token; mod semantic_token; mod tokenizer; mod error; pub use addressing::*; pub use syntactic_token::*; pub use semantic_token::*; pub use error::*; pub use tokenizer::*; use std::collections::hash_map::{HashMap, Entry}; use std::mem::take; // On Unicode support: Work with characters, not bytes. This will eventually be // used in Verdant and Doctrine, and it'd be nice to be able to support other languages. // The only reason to work with bytes over characters would be for a minor decrease in complexity. // Only support the assembly of files of up to 64kB. If assets need to be tacked on the end, // it can be done by another program. The VM will only be able to access the first 64kB of a file anyway. // Treat \t as a space, have it be a single character. // First, turn the program source code into a vector of SyntacticTokens. These // each contain a SourceLocation, and the type and value of the token. Every single // non-whitespace character of the program needs to be wrapped in a SyntacticToken. // The program source code can be accurately reconstructed from this list of // SyntacticTokens, and when I write GRID, if the mouse is hovering over any point // in the program listing, I'll be able to determine the exact token that is being hovered. // For macros, hovering over any character belonging to a macro definition will // highlight the entire macro definition, and also the currently-hovered body token // if there is one. Clicking the body token will bring up more information. // The SyntacticTokens will be collected into a vector, with label and macro definition // being constructed as we go. Label definitions are easy, I only need to note down the // names of the labels in order to validate label references in a later step. If a label // name has already been defined, tag the token with an error. If a macro name has already // been defined, tag the token with an error. // Collect children into macro definitions. This makes sense. // Step 2 is to generate bytecode, converting SyntacticTokens into SemanticTokens. // Label and macro definitions need to contain a list of usizes to references. // Macro definitions need to contain the body tokens as SemanticTokens. // Label and macro references need to point to their parents. // Can I stream-convert tokens from Syntactic to Semantic? // Each SynToken gets converted to a SemToken? Yeah. // I want to change the parser to be a multi-stage struct thing, holding its own state. enum SymbolDefinition { Macro(usize), Label(usize) } pub fn parse(source_code: &str) { use SyntacticTokenType as Syn; use SemanticTokenType as Sem; // ============================ STEP 1 ============================ // Convert the source code into a sorted vector of syntactic tokens and a // map of symbol definitions. // ================================================================ println!("[DEBUG] STEP 1: Parse source code into syntactic tokens"); let mut syntactic_tokens: Vec = Vec::new(); let mut symbol_definitions: HashMap = HashMap::new(); let mut macro_bodies: HashMap> = HashMap::new(); let mut macro_definition: Option = None; let mut macro_definition_body_tokens: Vec = Vec::new(); for mut token in TokenIterator::from_str(source_code) { if let Some(mdt) = macro_definition { token.use_in_macro_body(); let terminate = token.is_macro_terminator(); macro_definition_body_tokens.push(token); if terminate { macro_bodies.insert(mdt, take(&mut macro_definition_body_tokens)); macro_definition = None; } } else { if let Syn::MacroDefinition(ref name) = token.r#type { macro_definition = Some(syntactic_tokens.len()); match symbol_definitions.entry(name.to_string()) { Entry::Occupied(_) => {token.set_error(Error::DuplicateDefinition);} Entry::Vacant(v) => {v.insert(SymbolDefinition::Macro(syntactic_tokens.len()));} } } else if let Syn::LabelDefinition(ref name) = token.r#type { match symbol_definitions.entry(name.to_string()) { Entry::Occupied(_) => {token.set_error(Error::DuplicateDefinition);} Entry::Vacant(v) => {v.insert(SymbolDefinition::Label(syntactic_tokens.len()));} } } else if token.is_macro_terminator() { token.set_error(Error::OrphanedMacroTerminator); } syntactic_tokens.push(token); } } // ============================ STEP 2 ============================ // Convert syntactic tokens into semantic tokens, resolving label and macro // references in the process. // ================================================================ println!("[DEBUG] STEP 2: Resolve label and macro references"); let syntactic_token_count = syntactic_tokens.len(); let mut semantic_tokens = Vec::new(); let mut semantic_macro_bodies: HashMap> = HashMap::new(); for (i, mut syn_token) in syntactic_tokens.into_iter().enumerate() { let sem_token_type = if let Some(err) = syn_token.error { // Translate over any existing syntax errors Sem::Error(syn_token.r#type, err) } else { match syn_token.r#type { Syn::Reference(ref name) => { match symbol_definitions.get(name) { Some(SymbolDefinition::Macro(addr)) => Sem::MacroReference(*addr), Some(SymbolDefinition::Label(addr)) => Sem::LabelReference(*addr), None => Sem::Error(syn_token.r#type, Error::UnresolvedReference), } } Syn::LabelDefinition(name) => { let label_definition = LabelDefinition { name, address: 0, references: Vec::new() }; Sem::LabelDefinition(label_definition) } Syn::MacroDefinition(name) => { let mut sem_body_tokens = Vec::new(); // Iterate over every token in the body of the macro definition, // converting each one to a semantic token. for syn_body_token in macro_bodies.remove(&i).unwrap() { let sem_body_token_type = if let Some(err) = syn_body_token.error { // Translate over any existing syntax errors Sem::Error(syn_body_token.r#type, err) } else { match syn_body_token.r#type { Syn::Reference(ref name) => match symbol_definitions.get(name) { Some(SymbolDefinition::Macro(addr)) => Sem::MacroReference(*addr), Some(SymbolDefinition::Label(addr)) => Sem::LabelReference(*addr), None => Sem::Error(syn_body_token.r#type, Error::UnresolvedReference), }, Syn::LabelDefinition(_) => unreachable!(), Syn::MacroDefinition(_) => unreachable!(), Syn::MacroTerminator => { syn_token.source_location.end = syn_body_token.source_location.end; Sem::MacroTerminator }, Syn::Pad(v) => Sem::Pad(v), Syn::Byte(v) => Sem::Byte(v), Syn::Short(v) => Sem::Short(v), Syn::Instruction(v) => Sem::Instruction(v), Syn::Comment => Sem::Comment, } }; let sem_body_token = SemanticToken { r#type: sem_body_token_type, source_location: syn_body_token.source_location, bytecode_location: BytecodeLocation::zero(), }; sem_body_tokens.push(sem_body_token); } semantic_macro_bodies.insert(i, sem_body_tokens); let macro_definition = MacroDefinition { name, body_tokens: Vec::new(), references: Vec::new() }; Sem::MacroDefinition(macro_definition) } Syn::MacroTerminator => unreachable!(), Syn::Pad(v) => Sem::Pad(v), Syn::Byte(v) => Sem::Byte(v), Syn::Short(v) => Sem::Short(v), Syn::Instruction(v) => Sem::Instruction(v), Syn::Comment => Sem::Comment, } }; let sem_token = SemanticToken { r#type: sem_token_type, source_location: syn_token.source_location, bytecode_location: BytecodeLocation::zero(), }; semantic_tokens.push(sem_token); } assert_eq!(syntactic_token_count, semantic_tokens.len()); // ============================ STEP 3 ============================ // Iterate over each semantic token, generating bytecode. // ================================================================ println!("[DEBUG] STEP 3: Generate bytecode"); let mut bytecode: Vec = Vec::new(); // Map each label token to a list of bytecode addresses to populate let mut label_reference_addresses: HashMap> = HashMap::new(); // Map each label or macro definition token to a list of reference token pointers let mut references: HashMap> = HashMap::new(); macro_rules! addr {() => {bytecode.len() as u16};} macro_rules! push_u8 {($v:expr) => {bytecode.push($v); 1};} macro_rules! push_u16 {($v:expr) => {bytecode.extend_from_slice(&$v.to_be_bytes()); 2};} macro_rules! pad {($p:expr) => {bytecode.resize(bytecode.len() + $p as usize, 0); $p as u16};} for (i, sem_token) in semantic_tokens.iter_mut().enumerate() { let start_addr = addr!(); let byte_length: u16 = match &mut sem_token.r#type { Sem::LabelReference(addr) => { references.entry(*addr).or_default().push(i); label_reference_addresses.entry(*addr).or_default().push(addr!()); push_u16!(0u16); 2 }, Sem::MacroReference(addr) => { references.entry(*addr).or_default().push(i); let mut macro_byte_length: u16 = 0; for body_token in semantic_macro_bodies.get(addr).unwrap() { macro_byte_length += match &body_token.r#type { Sem::LabelReference(addr) => { label_reference_addresses.entry(*addr).or_default().push(addr!()); push_u16!(0u16); 2 }, Sem::MacroReference(_) => todo!(), Sem::LabelDefinition(_) => unreachable!(), Sem::MacroDefinition(_) => unreachable!(), Sem::Pad(p) => { pad!(*p); *p }, Sem::Byte(b) => { push_u8!(*b); 1 }, Sem::Short(s) => { push_u16!(*s); 2 }, Sem::Instruction(b) => { push_u8!(*b); 1 }, Sem::MacroTerminator => 0, Sem::Comment => 0, Sem::Error(..) => 0, }; } macro_byte_length }, Sem::LabelDefinition(definition) => {definition.address=addr!(); 1}, Sem::MacroDefinition(_) => 0, Sem::Pad(p) => { pad!(*p); *p }, Sem::Byte(b) => { push_u8!(*b); 1 }, Sem::Short(s) => { push_u16!(*s); 2 }, Sem::Instruction(b) => { push_u8!(*b); 1 }, Sem::MacroTerminator => unreachable!(), Sem::Comment => 0, Sem::Error(..) => 0, }; sem_token.bytecode_location.start = start_addr; sem_token.bytecode_location.length = byte_length; } // ============================ STEP 4 ============================ // Fill in addresses for label references. // ================================================================ println!("[DEBUG] STEP 4: Fill in values for label references"); for (label_i, slots) in label_reference_addresses.iter() { if let Sem::LabelDefinition(LabelDefinition { address, .. }) = semantic_tokens[*label_i].r#type { let [h,l] = address.to_be_bytes(); for slot in slots { bytecode[*slot as usize] = h; bytecode[slot.wrapping_add(1) as usize] = l; } } else { unreachable!() } } // ============================ STEP 5 ============================ // Move references and macro body tokens into label and macro definitions. // ================================================================ println!("[DEBUG] STEP 5: Move information into label and macro definition tokens"); for (i, token) in semantic_tokens.iter_mut().enumerate() { if let Sem::MacroDefinition(macro_definition) = &mut token.r#type { macro_definition.body_tokens = semantic_macro_bodies.remove(&i).unwrap(); if let Some(macro_references) = references.remove(&i) { macro_definition.references = macro_references; } } else if let Sem::LabelDefinition(label_definition) = &mut token.r#type { if let Some(label_references) = references.remove(&i) { label_definition.references = label_references; } } } assert_eq!(references.len(), 0); // ============================ STEP 6 ============================ // Remove trailing null-bytes from the bytecode. // ================================================================ println!("[DEBUG] STEP 6: Trim trailing null bytes"); if let Some(final_nonnull_byte) = bytecode.iter().rposition(|b| *b != 0) { let truncated_length = final_nonnull_byte + 1; let removed_byte_count = bytecode.len() - truncated_length; if removed_byte_count > 0 { println!("[INFO] Removed {removed_byte_count} trailing null bytes from assembled bytecode"); bytecode.truncate(truncated_length); } } for token in &semantic_tokens { if let Sem::MacroDefinition(macro_definition) = &token.r#type { for body_token in ¯o_definition.body_tokens { if let Sem::Error(_, err) = body_token.r#type { println!("[ERROR] (in macro '{}') {err:?} at {}:{}..{}:{}", macro_definition.name, body_token.source_location.start.line, body_token.source_location.start.column, body_token.source_location.end.line, body_token.source_location.end.column, ) } } } else if let Sem::Error(_, err) = token.r#type { println!("[ERROR {}:{}-{}:{}] {err:?}", token.source_location.start.line, token.source_location.start.column, token.source_location.end.line, token.source_location.end.column, ) } } println!(""); print!("Generated bytecode: [ "); for i in &bytecode { print!("{i:02x} "); } println!("]"); }