mod sprite_data;
mod vector_points;
pub use sprite_data::*;
pub use vector_points::*;
use geometry::HasDimensions;
use phosphor::*;
use std::cmp::{min, max, Ordering};
use std::iter::zip;
pub type ScreenDimensions = geometry::Dimensions<u16>;
pub type ScreenPosition = geometry::Point<u16>;
#[derive(Copy, Clone)]
pub enum ScreenLayer { Background, Foreground }
pub struct ScreenDevice {
pub wake_flag: bool,
/// Each byte represents a screen pixel, left-right-top-bottom.
// Only the bottom four bits of each byte are used.
pub foreground: Vec<u8>,
pub background: Vec<u8>,
pub is_dirty: bool,
pub is_resizable: bool,
pub cursor: ScreenPosition,
pub dimensions: ScreenDimensions,
pub sprite_data: SpriteData,
pub palette: [Colour; 16],
pub palette_high: u8,
pub sprite_colours: [u8; 4],
pub vector: VectorPoints,
}
impl ScreenDevice {
pub fn new() -> Self {
Self {
wake_flag: false,
foreground: Vec::new(),
background: Vec::new(),
is_dirty: false,
is_resizable: true,
cursor: ScreenPosition::ZERO,
dimensions: ScreenDimensions::ZERO,
sprite_data: SpriteData::new(),
palette: [Colour::BLACK; 16],
palette_high: 0,
sprite_colours: [0; 4],
vector: VectorPoints::new(),
}
}
pub fn set_size(&mut self, dimensions: ScreenDimensions) {
self.is_resizable = false;
self.resize(dimensions);
}
pub fn resize(&mut self, dimensions: ScreenDimensions) {
let old_width = self.dimensions.width as usize;
let old_height = self.dimensions.height as usize;
let new_width = dimensions.width as usize;
let new_height = dimensions.height as usize;
let new_area = dimensions.area_usize();
let y_range = 0..min(old_height, new_height);
match new_width.cmp(&old_width) {
Ordering::Less => {
for y in y_range {
let from = y * old_width;
let to = y * new_width;
let len = new_width;
self.foreground.copy_within(from..from+len, to);
self.background.copy_within(from..from+len, to);
}
self.foreground.resize(new_area, 0);
self.background.resize(new_area, 0);
},
Ordering::Greater => {
self.foreground.resize(new_area, 0);
self.background.resize(new_area, 0);
for y in y_range.rev() {
let from = y * old_width;
let to = y * new_width;
let len = old_width;
self.foreground.copy_within(from..from+len, to);
self.background.copy_within(from..from+len, to);
self.foreground[to+len..to+new_width].fill(0);
self.background[to+len..to+new_width].fill(0);
}
},
Ordering::Equal => {
self.foreground.resize(new_area, 0);
self.background.resize(new_area, 0);
},
};
self.dimensions = dimensions;
self.is_dirty = true;
self.wake_flag = true;
}
pub fn render(&mut self, buffer: &mut Buffer) {
// Pre-calculate a lookup table for the colour palette
let mut palette = [Colour::BLACK; 256];
for (i, c) in palette.iter_mut().enumerate() {
match i > 0x0f {
true => *c = self.palette[i >> 4],
false => *c = self.palette[i & 0x0f],
}
};
let b_width = buffer.width() as usize;
let b_height = buffer.height() as usize;
let s_width = self.dimensions.width() as usize;
let s_height = self.dimensions.height() as usize;
// Write colours to the buffer
if b_width == s_width && b_height == s_height {
let screen_iter = zip(&self.background, &self.foreground);
let buffer_iter = buffer.as_mut_slice();
for (b, (bg, fg)) in zip(buffer_iter, screen_iter) {
*b = palette[(fg << 4 | bg) as usize];
}
} else {
let width = min(b_width, s_width);
let height = min(b_height, s_height);
let width_excess = b_width.saturating_sub(width);
let b_slice = &mut buffer.as_mut_slice();
let mut bi = 0;
let mut si = 0;
for _ in 0..height {
let b_iter = &mut b_slice[bi..bi+width];
let s_iter = zip(
&self.background[si..si+width],
&self.foreground[si..si+width],
);
for (b, (bg, fg)) in zip(b_iter, s_iter) {
*b = palette[(fg << 4 | bg) as usize];
}
b_slice[bi+width..bi+width+width_excess].fill(palette[0]);
bi += b_width;
si += s_width;
}
b_slice[bi..].fill(palette[0]);
}
// Set flags
self.is_dirty = false;
}
pub fn set_palette_high(&mut self, val: u8) {
self.palette_high = val;
}
pub fn set_palette_low(&mut self, val: u8) {
let index = (self.palette_high >> 4) as usize;
let red = (self.palette_high & 0x0f) * 17;
let green = (val >> 4) * 17;
let blue = (val & 0x0f) * 17;
self.palette[index] = Colour::from_rgb(red, green, blue);
self.is_dirty = true;
}
pub fn set_sprite_colour_high(&mut self, val: u8) {
self.sprite_colours[0] = val >> 4;
self.sprite_colours[1] = val & 0x0f;
}
pub fn set_sprite_colour_low(&mut self, val: u8) {
self.sprite_colours[2] = val >> 4;
self.sprite_colours[3] = val & 0x0f;
}
pub fn shunt(&mut self, val: u8) {
let is_negative = val & 0x80 != 0;
let is_vertical = val & 0x40 != 0;
let dist = (val & 0x3f) as u16;
match (is_negative, is_vertical) {
(false, false) => self.cursor.x = self.cursor.x.wrapping_add(dist),
(false, true) => self.cursor.y = self.cursor.y.wrapping_add(dist),
( true, false) => self.cursor.x = self.cursor.x.wrapping_sub(dist),
( true, true) => self.cursor.y = self.cursor.y.wrapping_sub(dist),
};
}
pub fn draw(&mut self, val: u8) {
self.vector.push(self.cursor);
self.is_dirty = true;
// Parse draw byte
let draw_mode = val & 0x70;
let params = val & 0x0f;
let layer = match val & 0x80 != 0 {
true => ScreenLayer::Foreground,
false => ScreenLayer::Background
};
match draw_mode {
0x00 => self.draw_pixel(params, layer, self.cursor),
0x10 => self.draw_sprite_1bit(params, layer),
0x20 => self.fill_layer(params, layer),
0x30 => self.draw_sprite_2bit(params, layer),
0x40 => self.draw_line(params, layer),
0x50 => self.draw_rect(params, layer),
0x60 => todo!("Draw 1-bit textured line"),
0x70 => self.draw_rect_1bit(params, layer),
_ => unreachable!(),
};
}
fn draw_pixel(&mut self, colour: u8, layer: ScreenLayer, point: ScreenPosition) {
let dim = self.dimensions;
if !dim.contains_point(point) { return }
let index = point.x as usize + ((dim.width as usize) * (point.y as usize));
match layer {
ScreenLayer::Background => self.background[index] = colour,
ScreenLayer::Foreground => self.foreground[index] = colour,
};
}
fn fill_layer(&mut self, colour: u8, layer: ScreenLayer) {
match layer {
ScreenLayer::Background => self.background.fill(colour),
ScreenLayer::Foreground => self.foreground.fill(colour),
}
}
fn draw_sprite_1bit(&mut self, params: u8, layer: ScreenLayer) {
let mut sprite = [0; 64];
let mut pointer: usize = 0;
let data = self.sprite_data.get_1bit_sprite();
for row in data {
for x in (0..8).rev() {
sprite[pointer] = (row >> x) & 0x1;
pointer += 1;
}
}
self.draw_sprite(params, layer, sprite);
}
fn draw_sprite_2bit(&mut self, params: u8, layer: ScreenLayer) {
let mut sprite = [0; 64];
let mut pointer: usize = 0;
let data = self.sprite_data.get_2bit_sprite();
let (spr1, spr2) = data.split_array_ref::<8>();
for (row1, row2) in std::iter::zip(spr1, spr2) {
for x in (0..8).rev() {
let bit1 = (row1 >> x << 1) & 0x2;
let bit2 = (row2 >> x) & 0x1;
sprite[pointer] = bit1 | bit2;
pointer += 1;
}
}
self.draw_sprite(params, layer, sprite);
}
fn draw_line(&mut self, colour: u8, layer: ScreenLayer) {
let [p0, p1] = self.vector.get_pair();
match (p0.x == p1.x, p0.y == p1.y) {
(false, false) => self.draw_diagonal_line(colour, layer),
(false, true) => self.draw_horizontal_line(colour, layer),
( true, false) => self.draw_vertical_line(colour, layer),
( true, true) => self.draw_pixel(colour, layer, p0),
};
}
fn draw_diagonal_line(&mut self, colour: u8, layer: ScreenLayer) {
fn abs_diff(v0: u16, v1: u16) -> u16 {
let v = v1.wrapping_sub(v0);
if v > 0x8000 { !v + 1 } else { v }
}
let [p0, p1] = self.vector.get_pair();
// If the slope of the line is greater than 1.
if abs_diff(p0.y, p1.y) > abs_diff(p0.x, p1.x) {
// Swap points 0 and 1 so that y0 is always smaller than y1.
let (x0, y0, x1, y1) = match p0.y > p1.y {
true => (p1.x, p1.y, p0.x, p0.y),
false => (p0.x, p0.y, p1.x, p1.y),
};
let dy = y1 - y0;
let (dx, xi) = match x0 > x1 {
true => (x0 - x1, 0xffff),
false => (x1 - x0, 0x0001),
};
let dxdy2 = (dx.wrapping_sub(dy)).wrapping_mul(2);
let dx2 = dx * 2;
let mut d = dx2.wrapping_sub(dy);
let mut x = x0;
for y in y0..=y1 {
self.draw_pixel(colour, layer, ScreenPosition::new(x, y));
if d < 0x8000 {
x = x.wrapping_add(xi);
d = d.wrapping_add(dxdy2);
} else {
d = d.wrapping_add(dx2);
}
}
// If the slope of the line is less than or equal to 1.
} else {
// Swap points 0 and 1 so that x0 is always smaller than x1.
let (x0, y0, x1, y1) = match p0.x > p1.x {
true => (p1.x, p1.y, p0.x, p0.y),
false => (p0.x, p0.y, p1.x, p1.y),
};
let dx = x1 - x0;
let (dy, yi) = match y0 > y1 {
true => (y0 - y1, 0xffff),
false => (y1 - y0, 0x0001),
};
let dydx2 = (dy.wrapping_sub(dx)).wrapping_mul(2);
let dy2 = dy * 2;
let mut d = dy2.wrapping_sub(dx);
let mut y = y0;
for x in x0..=x1 {
self.draw_pixel(colour, layer, ScreenPosition::new(x, y));
if d < 0x8000 {
y = y.wrapping_add(yi);
d = d.wrapping_add(dydx2);
} else {
d = d.wrapping_add(dy2);
}
}
}
}
fn draw_horizontal_line(&mut self, colour: u8, layer: ScreenLayer) {
if let Some([x0, y, x1, _]) = self.find_vector_bounding_box() {
let screen_width = self.dimensions.width as usize;
let i = screen_width * y;
let layer = match layer {
ScreenLayer::Background => &mut self.background,
ScreenLayer::Foreground => &mut self.foreground,
};
layer[i+x0..=i+x1].fill(colour);
}
}
fn draw_vertical_line(&mut self, colour: u8, layer: ScreenLayer) {
if let Some([x, y0, _, y1]) = self.find_vector_bounding_box() {
let screen_width = self.dimensions.width as usize;
let mut i = (screen_width * y0) + x;
let layer = match layer {
ScreenLayer::Background => &mut self.background,
ScreenLayer::Foreground => &mut self.foreground,
};
for _ in y0..=y1 {
layer[i] = colour;
i += screen_width;
}
}
}
fn draw_rect(&mut self, colour: u8, layer: ScreenLayer) {
if let Some([x0, y0, x1, y1]) = self.find_vector_bounding_box() {
let screen_width = self.dimensions.width as usize;
let rect_width = x1 - x0 + 1;
let mut i = x0 + (screen_width * y0);
let pixels = match layer {
ScreenLayer::Background => &mut self.background,
ScreenLayer::Foreground => &mut self.foreground,
};
for _ in y0..=y1 {
pixels[i..i+rect_width].fill(colour);
i += screen_width;
}
}
}
fn draw_rect_1bit(&mut self, params: u8, layer: ScreenLayer) {
if let Some([x0, y0, x1, y1]) = self.find_vector_bounding_box() {
let screen_width = self.dimensions.width as usize;
let rect_width = x1 - x0 + 1;
let mut i = x0 + (screen_width * y0);
let pixels = match layer {
ScreenLayer::Background => &mut self.background,
ScreenLayer::Foreground => &mut self.foreground,
};
let sprite_data = self.sprite_data.get_1bit_sprite();
let mut sprite_i = y0 % 8;
let sprite_x_off = (x0 % 8) as u32;
let transparent = params & 0x08 != 0;
if params & 0x07 != 0 {
todo!("Pre-treat sprite, with rotation/translation");
}
for _ in y0..=y1 {
let mut row = sprite_data[sprite_i].rotate_left(sprite_x_off);
for _ in x0..=x1 {
let colour = (row >> 7) as usize;
if !(transparent && colour == 0) {
pixels[i] = self.sprite_colours[colour];
}
row = row.rotate_left(1);
i += 1;
}
sprite_i = (sprite_i + 1) % 8;
i += screen_width - rect_width;
}
};
}
fn draw_sprite(&mut self, params: u8, layer: ScreenLayer, sprite: [u8; 64]) {
let transparent = params & 0x08 != 0;
let mut position = self.cursor;
let mut pointer: usize = 0;
macro_rules! for8 { ($block:block) => { for _ in 0..8 { $block } }; }
macro_rules! r { ($v:expr) => { position.x = position.x.wrapping_add($v) }; }
macro_rules! l { ($v:expr) => { position.x = position.x.wrapping_sub($v) }; }
macro_rules! d { ($v:expr) => { position.y = position.y.wrapping_add($v) }; }
macro_rules! u { ($v:expr) => { position.y = position.y.wrapping_sub($v) }; }
macro_rules! px { () => {
let colour = sprite[pointer];
if !(transparent && colour == 0) {
self.draw_pixel(self.sprite_colours[colour as usize], layer, position);
}
pointer += 1;
}; }
match params & 0x07 {
0 => { for8!{{ for8!{{ px!(); r!(1); }} l!(8); d!(1); }} }
1 => { r!(7); for8!{{ for8!{{ px!(); l!(1); }} r!(8); d!(1); }} }
2 => { d!(7); for8!{{ for8!{{ px!(); r!(1); }} l!(8); u!(1); }} }
3 => { r!(7); d!(7); for8!{{ for8!{{ px!(); l!(1); }} r!(8); u!(1); }} }
4 => { for8!{{ for8!{{ px!(); d!(1); }} u!(8); r!(1); }} }
5 => { r!(7); for8!{{ for8!{{ px!(); d!(1); }} u!(8); l!(1); }} }
6 => { d!(7);for8!{{ for8!{{ px!(); u!(1); }} d!(8); r!(1); }} }
7 => { r!(7); d!(7); for8!{{ for8!{{ px!(); u!(1); }} d!(8); l!(1); }} }
_ => unreachable!(),
}
}
/// Returns [x0, y0, x1, y1]
fn find_vector_bounding_box(&self) -> Option<[usize; 4]> {
macro_rules! raise {($v:expr) => {$v.wrapping_add(0x8000)};}
macro_rules! lower {($v:expr) => {$v.wrapping_sub(0x8000)};}
let [p0, p1] = self.vector.get_pair();
let [p0x, p0y] = [ raise!(p0.x), raise!(p0.y) ];
let [p1x, p1y] = [ raise!(p1.x), raise!(p1.y) ];
let [x0, y0] = [ min(p0x, p1x), min(p0y, p1y) ];
let [x1, y1] = [ max(p0x, p1x), max(p0y, p1y) ];
let right = self.dimensions.width.saturating_sub(1);
let bottom = self.dimensions.height.saturating_sub(1);
if x0 > raise!(right) || y0 > raise!(bottom) || x1 < 0x8000 || y1 < 0x8000 {
None
} else {
Some([
if x0 < 0x8000 { 0 } else { min(lower!(x0), right) } as usize,
if y0 < 0x8000 { 0 } else { min(lower!(y0), bottom) } as usize,
if x1 < 0x8000 { 0 } else { min(lower!(x1), right) } as usize,
if y1 < 0x8000 { 0 } else { min(lower!(y1), bottom) } as usize,
])
}
}
}