use crate::*;
use bedrock_core::*;
use geometry::*;
use phosphor::*;
type Sprite = [[u8; 8]; 8];
#[derive(Clone, Copy)]
pub enum Layer { Fg, Bg }
pub struct ScreenDevice {
pub wake: bool,
pub accessed: bool,
/// Each byte represents a screen pixel, left-to-right and top-to-bottom.
// Only the bottom four bits of each byte are used.
// TODO: Consider using the high bit of each pixel byte as a dirty bit.
pub fg: Vec<u8>,
pub bg: Vec<u8>,
pub dirty: bool,
pub cursor: ScreenPosition,
pub vector: ScreenPosition,
pub dimensions: ScreenDimensions,
pub dirty_dimensions: bool,
pub width_write: u16,
pub height_write: u16,
pub fixed_width: Option<u16>,
pub fixed_height: Option<u16>,
pub palette_write: u16,
pub palette: [Colour; 16],
pub colours: u16,
pub sprite: SpriteBuffer,
}
impl ScreenDevice {
pub fn new(config: &EmulatorConfig) -> Self {
let area = config.dimensions.area_usize();
Self {
wake: false,
accessed: false,
fg: vec![0; area],
bg: vec![0; area],
dirty: false,
cursor: ScreenPosition::ZERO,
vector: ScreenPosition::ZERO,
dimensions: config.dimensions,
dirty_dimensions: true,
width_write: 0,
height_write: 0,
fixed_width: None,
fixed_height: None,
palette_write: 0,
palette: [Colour::BLACK; 16],
colours: 0,
sprite: SpriteBuffer::new(),
}
}
/// External resize.
pub fn resize(&mut self, dimensions: phosphor::Dimensions) {
// Replace dimensions with fixed dimensions.
let screen_dimensions = ScreenDimensions {
width: match self.fixed_width {
Some(fixed_width) => fixed_width,
None => dimensions.width as u16,
},
height: match self.fixed_height {
Some(fixed_height) => fixed_height,
None => dimensions.height as u16,
},
};
let old_dimensions = self.dimensions;
if self.dimensions != screen_dimensions {
self.dimensions = screen_dimensions;
self.resize_layers(old_dimensions);
self.wake = true;
}
}
/// Internal resize.
fn resize_width(&mut self) {
self.fixed_width = Some(self.width_write);
self.dirty_dimensions = true;
let old_dimensions = self.dimensions;
if self.dimensions.width != self.width_write {
self.dimensions.width = self.width_write;
self.resize_layers(old_dimensions);
}
}
/// Internal resize.
fn resize_height(&mut self) {
self.fixed_height = Some(self.height_write);
self.dirty_dimensions = true;
let old_dimensions = self.dimensions;
if self.dimensions.height != self.height_write {
self.dimensions.height = self.height_write;
self.resize_layers(old_dimensions);
}
}
fn resize_layers(&mut self, old_dimensions: ScreenDimensions) {
use std::cmp::{min, Ordering};
let old_width = old_dimensions.width as usize;
let old_height = old_dimensions.height as usize;
let new_width = self.dimensions.width as usize;
let new_height = self.dimensions.height as usize;
let new_area = self.dimensions.area_usize();
let y_range = 0..min(old_height, new_height);
let new_colour = match self.fg.last() {
None | Some(0) => *self.bg.last().unwrap_or(&0),
Some(colour) => *colour,
};
match new_width.cmp(&old_width) {
Ordering::Less => {
for y in y_range {
let src = y * old_width;
let dest = y * new_width;
let len = new_width;
self.fg.copy_within(src..src+len, dest);
self.bg.copy_within(src..src+len, dest);
}
self.fg.resize(new_area, 0);
self.bg.resize(new_area, new_colour);
},
Ordering::Greater => {
self.fg.resize(new_area, 0);
self.bg.resize(new_area, new_colour);
for y in y_range.rev() {
let src = y * old_width;
let dest = y * new_width;
let len = old_width;
self.fg.copy_within(src..src+len, dest);
self.bg.copy_within(src..src+len, dest);
self.fg[dest+len..dest+new_width].fill(0);
self.bg[dest+len..dest+new_width].fill(new_colour);
}
},
Ordering::Equal => {
self.fg.resize(new_area, 0);
self.bg.resize(new_area, new_colour);
},
};
self.dirty = true;
}
pub fn set_palette(&mut self) {
let i = (self.palette_write >> 12 ) as usize;
let r = (self.palette_write >> 8 & 0xf) as u8 * 17;
let g = (self.palette_write >> 4 & 0xf) as u8 * 17;
let b = (self.palette_write & 0xf) as u8 * 17;
let colour = Colour::from_rgb(r, g, b);
if self.palette[i] != colour {
self.palette[i] = colour;
self.dirty = true;
}
}
pub fn draw_dispatch(&mut self, draw: u8) {
match draw >> 4 {
0x0 => self.op_draw_pixel(Layer::Bg, draw),
0x1 => self.op_draw_sprite(Layer::Bg, draw),
0x2 => self.op_fill_layer(Layer::Bg, draw),
0x3 => self.op_draw_sprite(Layer::Bg, draw),
0x4 => self.op_draw_line(Layer::Bg, draw),
0x5 => self.op_draw_line(Layer::Bg, draw),
0x6 => self.op_draw_rect(Layer::Bg, draw),
0x7 => self.op_draw_rect(Layer::Bg, draw),
0x8 => self.op_draw_pixel(Layer::Fg, draw),
0x9 => self.op_draw_sprite(Layer::Fg, draw),
0xA => self.op_fill_layer(Layer::Fg, draw),
0xB => self.op_draw_sprite(Layer::Fg, draw),
0xC => self.op_draw_line(Layer::Fg, draw),
0xD => self.op_draw_line(Layer::Fg, draw),
0xE => self.op_draw_rect(Layer::Fg, draw),
0xF => self.op_draw_rect(Layer::Fg, draw),
_ => unreachable!(),
}
self.vector = self.cursor;
self.dirty = true;
}
pub fn move_cursor(&mut self, value: u8) {
let distance = (value & 0x3f) as u16;
match value >> 6 {
0b00 => self.cursor.x = self.cursor.x.wrapping_add(distance),
0b01 => self.cursor.y = self.cursor.y.wrapping_add(distance),
0b10 => self.cursor.x = self.cursor.x.wrapping_sub(distance),
0b11 => self.cursor.y = self.cursor.y.wrapping_sub(distance),
_ => unreachable!(),
};
}
/// Colour must already be masked by 0xf.
pub fn draw_pixel(&mut self, layer: Layer, x: u16, y: u16, colour: u8) {
if x < self.dimensions.width && y < self.dimensions.height {
let index = x as usize + (self.dimensions.width as usize * y as usize);
match layer {
Layer::Fg => self.fg[index] = colour,
Layer::Bg => self.bg[index] = colour,
};
}
}
fn op_draw_pixel(&mut self, layer: Layer, draw: u8) {
self.draw_pixel(layer, self.cursor.x, self.cursor.y, draw & 0xf);
}
fn op_fill_layer(&mut self, layer: Layer, draw: u8) {
match layer {
Layer::Fg => self.fg.fill(draw & 0xf),
Layer::Bg => self.bg.fill(draw & 0xf),
}
}
fn op_draw_sprite(&mut self, layer: Layer, draw: u8) {
let sprite = match draw & 0x20 != 0 {
true => self.sprite.read_2bit_sprite(draw),
false => self.sprite.read_1bit_sprite(draw),
};
let colours = [
(self.colours >> 12 & 0x000f) as u8,
(self.colours >> 8 & 0x000f) as u8,
(self.colours >> 4 & 0x000f) as u8,
(self.colours & 0x000f) as u8,
];
let cx = self.cursor.x;
let cy = self.cursor.y;
if draw & 0x08 != 0 {
// Draw sprite with transparent background
for y in 0..8 {
for x in 0..8 {
let index = sprite[y as usize][x as usize] as usize;
if index != 0 {
let px = cx.wrapping_add(x);
let py = cy.wrapping_add(y);
self.draw_pixel(layer, px, py, colours[index]);
}
}
}
} else {
// Draw sprite with opaque background
for y in 0..8 {
for x in 0..8 {
let index = sprite[y as usize][x as usize] as usize;
let px = cx.wrapping_add(x);
let py = cy.wrapping_add(y);
self.draw_pixel(layer, px, py, colours[index]);
}
}
}
}
fn op_draw_line(&mut self, layer: Layer, draw: u8) {
let mut x: i16 = self.cursor.x as i16;
let mut y: i16 = self.cursor.y as i16;
let x_end: i16 = self.vector.x as i16;
let y_end: i16 = self.vector.y as i16;
let dx: i32 = ((x_end as i32) - (x as i32)).abs();
let dy: i32 = -((y_end as i32) - (y as i32)).abs();
let sx: i16 = if x < x_end { 1 } else { -1 };
let sy: i16 = if y < y_end { 1 } else { -1 };
let mut e1: i32 = dx + dy;
if draw & 0x10 != 0 {
// Draw 1-bit textured line.
let sprite = self.sprite.read_1bit_sprite(draw);
let c1 = (self.colours >> 8 & 0xf) as u8;
let c0 = (self.colours >> 12 & 0xf) as u8;
let opaque = draw & 0x08 == 0;
loop {
let sprite_pixel = sprite[(y as usize) % 8][(x as usize) % 8];
if sprite_pixel != 0 { self.draw_pixel(layer, x as u16, y as u16, c1); }
else if opaque { self.draw_pixel(layer, x as u16, y as u16, c0); }
if x == x_end && y == y_end { break; }
let e2 = e1 << 1;
if e2 >= dy { e1 += dy; x += sx; }
if e2 <= dx { e1 += dx; y += sy; }
}
} else {
// Draw solid line.
let colour = draw & 0xf;
loop {
self.draw_pixel(layer, x as u16, y as u16, colour);
if x == x_end && y == y_end { break; }
let e2 = e1 << 1;
if e2 >= dy { e1 += dy; x += sx; }
if e2 <= dx { e1 += dx; y += sy; }
}
}
}
fn op_draw_rect(&mut self, layer: Layer, draw: u8) {
macro_rules! clamp {
($v:expr, $max:expr) => {
if $v > 0x7fff { 0 } else if $v > $max { $max } else { $v }
};
}
macro_rules! out_of_bounds {
($axis:ident, $max:expr) => {{
let c = self.cursor.$axis;
let v = self.vector.$axis;
c >= $max && v >= $max && (c >= 0x8000) == (v >= 0x8000)
}};
}
let out_of_bounds_x = out_of_bounds!(x, self.dimensions.width);
let out_of_bounds_y = out_of_bounds!(y, self.dimensions.height);
if out_of_bounds_x || out_of_bounds_y { return; }
// Get bounding box.
let mut l = clamp!(self.vector.x, self.dimensions.width -1);
let mut r = clamp!(self.cursor.x, self.dimensions.width -1);
let mut t = clamp!(self.vector.y, self.dimensions.height -1);
let mut b = clamp!(self.cursor.y, self.dimensions.height -1);
if l > r { std::mem::swap(&mut l, &mut r) };
if t > b { std::mem::swap(&mut t, &mut b) };
if draw & 0x10 != 0 {
// Draw 1-bit textured rectangle.
let sprite = self.sprite.read_1bit_sprite(draw);
let c1 = (self.colours >> 8 & 0xf) as u8;
let c0 = (self.colours >> 12 & 0xf) as u8;
let opaque = draw & 0x08 == 0;
for y in t..=b {
for x in l..=r {
let sprite_colour = sprite[(y as usize) % 8][(x as usize) % 8];
if sprite_colour != 0 { self.draw_pixel(layer, x, y, c1); }
else if opaque { self.draw_pixel(layer, x, y, c0); }
}
}
} else {
// Draw solid rectangle.
let colour = draw & 0xf;
for y in t..=b {
for x in l..=r {
self.draw_pixel(layer, x, y, colour);
}
}
}
}
}
impl Device for ScreenDevice {
fn read(&mut self, port: u8) -> u8 {
self.accessed = true;
match port {
0x0 => read_h!(self.dimensions.width),
0x1 => read_l!(self.dimensions.width),
0x2 => read_h!(self.dimensions.height),
0x3 => read_l!(self.dimensions.height),
0x4 => read_h!(self.cursor.x),
0x5 => read_l!(self.cursor.x),
0x6 => read_h!(self.cursor.y),
0x7 => read_l!(self.cursor.y),
0x8 => 0,
0x9 => 0,
0xa => 0,
0xb => 0,
0xc => 0,
0xd => 0,
0xe => 0,
0xf => 0,
_ => unreachable!(),
}
}
fn write(&mut self, port: u8, value: u8) -> Option<Signal> {
self.accessed = true;
match port {
0x0 => write_h!(self.width_write, value),
0x1 => { write_l!(self.width_write, value); self.resize_width(); },
0x2 => write_h!(self.height_write, value),
0x3 => { write_l!(self.height_write, value); self.resize_height(); },
0x4 => write_h!(self.cursor.x, value),
0x5 => write_l!(self.cursor.x, value),
0x6 => write_h!(self.cursor.y, value),
0x7 => write_l!(self.cursor.y, value),
0x8 => write_h!(self.palette_write, value),
0x9 => { write_l!(self.palette_write, value); self.set_palette(); },
0xa => write_h!(self.colours, value),
0xb => write_l!(self.colours, value),
0xc => self.sprite.push_byte(value),
0xd => self.sprite.push_byte(value),
0xe => self.draw_dispatch(value),
0xf => self.move_cursor(value),
_ => unreachable!(),
};
return None;
}
fn wake(&mut self) -> bool {
self.accessed = true;
std::mem::take(&mut self.wake)
}
}
impl HasDimensions<u16> for ScreenDevice {
fn dimensions(&self) -> ScreenDimensions {
self.dimensions
}
}
pub struct SpriteBuffer {
pub mem: [u8; 16],
pub pointer: usize,
pub cached: Option<(Sprite, u8)>,
}
impl SpriteBuffer {
pub fn new() -> Self {
Self {
mem: [0; 16],
pointer: 0,
cached: None,
}
}
pub fn push_byte(&mut self, byte: u8) {
self.mem[self.pointer] = byte;
self.pointer = (self.pointer + 1) % 16;
self.cached = None;
}
pub fn read_1bit_sprite(&mut self, draw: u8) -> Sprite {
if let Some((sprite, transform)) = self.cached {
if transform == (draw & 0x77) {
return sprite;
}
}
macro_rules! c {
($v:ident=mem[$p:ident++]) => { let $v = self.mem[$p % 16]; $p = $p.wrapping_add(1); };
($v:ident=mem[--$p:ident]) => { $p = $p.wrapping_sub(1); let $v = self.mem[$p % 16]; };
}
let mut sprite = [[0; 8]; 8];
let mut p = match draw & 0x02 != 0 {
true => self.pointer,
false => self.pointer + 8,
};
match draw & 0x07 {
0x0 => { for y in 0..8 { c!(l=mem[p++]); for x in 0..8 { sprite[y][x] = l>>(7-x) & 1; } } },
0x1 => { for y in 0..8 { c!(l=mem[p++]); for x in 0..8 { sprite[y][x] = l>>( x) & 1; } } },
0x2 => { for y in 0..8 { c!(l=mem[--p]); for x in 0..8 { sprite[y][x] = l>>(7-x) & 1; } } },
0x3 => { for y in 0..8 { c!(l=mem[--p]); for x in 0..8 { sprite[y][x] = l>>( x) & 1; } } },
0x4 => { for y in 0..8 { c!(l=mem[p++]); for x in 0..8 { sprite[x][y] = l>>(7-x) & 1; } } },
0x5 => { for y in 0..8 { c!(l=mem[p++]); for x in 0..8 { sprite[x][y] = l>>( x) & 1; } } },
0x6 => { for y in 0..8 { c!(l=mem[--p]); for x in 0..8 { sprite[x][y] = l>>(7-x) & 1; } } },
0x7 => { for y in 0..8 { c!(l=mem[--p]); for x in 0..8 { sprite[x][y] = l>>( x) & 1; } } },
_ => unreachable!(),
}
self.cached = Some((sprite, draw & 0x77));
return sprite;
}
pub fn read_2bit_sprite(&mut self, draw: u8) -> Sprite {
if let Some((sprite, transform)) = self.cached {
if transform == (draw & 0x77) {
return sprite;
}
}
macro_rules! c {
($v:ident=mem[$p:ident++]) => { let $v = self.mem[$p % 16]; $p = $p.wrapping_add(1); };
($v:ident=mem[--$p:ident]) => { $p = $p.wrapping_sub(1); let $v = self.mem[$p % 16]; };
}
let mut sprite = [[0; 8]; 8];
let mut p = match draw & 0x02 != 0 {
true => self.pointer,
false => self.pointer + 8,
};
let mut s = p + 8;
match draw & 0x07 {
0x0 => for y in 0..8 { c!(l=mem[p++]); c!(h=mem[s++]); for x in 0..8 { let i=7-x; sprite[y][x] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x1 => for y in 0..8 { c!(l=mem[p++]); c!(h=mem[s++]); for x in 0..8 { let i= x; sprite[y][x] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x2 => for y in 0..8 { c!(l=mem[--p]); c!(h=mem[--s]); for x in 0..8 { let i=7-x; sprite[y][x] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x3 => for y in 0..8 { c!(l=mem[--p]); c!(h=mem[--s]); for x in 0..8 { let i= x; sprite[y][x] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x4 => for y in 0..8 { c!(l=mem[p++]); c!(h=mem[s++]); for x in 0..8 { let i=7-x; sprite[x][y] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x5 => for y in 0..8 { c!(l=mem[p++]); c!(h=mem[s++]); for x in 0..8 { let i= x; sprite[x][y] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x6 => for y in 0..8 { c!(l=mem[--p]); c!(h=mem[--s]); for x in 0..8 { let i=7-x; sprite[x][y] = (l>>i & 1) | (h>>i & 1) << 1; } },
0x7 => for y in 0..8 { c!(l=mem[--p]); c!(h=mem[--s]); for x in 0..8 { let i= x; sprite[x][y] = (l>>i & 1) | (h>>i & 1) << 1; } },
_ => unreachable!(),
}
self.cached = Some((sprite, draw & 0x77));
return sprite;
}
}