1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
use crate::*;
use std::collections::HashMap;
/// Doesn't truncate trailing null bytes.
pub fn generate_bytecode(semantic: &Program) -> AssembledProgram {
let mut generator = BytecodeGenerator::new(&semantic.definitions);
generator.parse(&semantic.tokens, false);
generator.fill_slots();
let mut symbols = Vec::new();
for (name, information) in generator.labels {
let source = semantic.definitions.get(&name).unwrap().source.clone();
let address = information.address;
symbols.push(AssembledSymbol { name, address, source });
}
AssembledProgram {
bytecode: generator.bytecode,
symbols,
}
}
pub struct BytecodeGenerator<'a> {
definitions: &'a HashMap<String, Tracked<Definition>>,
labels: HashMap<String, LabelInformation>,
stack: Vec<usize>,
bytecode: Vec<u8>,
}
struct LabelInformation {
address: usize,
slots: Vec<usize>,
}
impl<'a> BytecodeGenerator<'a> {
pub fn new(definitions: &'a HashMap<String, Tracked<Definition>>) -> Self {
let mut labels = HashMap::new();
for (name, definition) in definitions {
if let DefinitionKind::LabelDefinition = definition.kind {
let key = name.to_string();
let value = LabelInformation { address: 0, slots: Vec::new() };
labels.insert(key, value);
}
}
Self {
definitions,
labels,
stack: Vec::new(),
bytecode: Vec::new(),
}
}
pub fn parse(&mut self, tokens: &[Tracked<SemanticToken>], in_macro: bool) {
macro_rules! byte {
($byte:expr) => {
self.bytecode.push($byte)
};
}
macro_rules! double {
($double:expr) => {{
let [high, low] = u16::to_be_bytes($double);
self.bytecode.push(high);
self.bytecode.push(low);
}};
}
for token in tokens {
let i = self.bytecode.len();
match &token.value {
SemanticToken::Comment(_) => (),
SemanticToken::LabelDefinition(name) => if in_macro {
unreachable!("Uncaught label definition in macro");
} else {
let information = self.labels.get_mut(name).unwrap();
information.address = i;
}
SemanticToken::MacroDefinition{ .. } => if in_macro {
unreachable!("Uncaught macro definition in macro");
}
SemanticToken::RawValue(value) => match value {
Value::Byte(byte) => byte!(*byte),
Value::Double(double) => double!(*double),
}
SemanticToken::Instruction(instruction) => {
byte!(instruction.value)
}
SemanticToken::Invocation(name) => {
if let Some(definition) = self.definitions.get(name) {
match &definition.kind {
DefinitionKind::MacroDefinition(body) => {
self.parse(body, true);
}
DefinitionKind::LabelDefinition => {
let information = self.labels.get_mut(name).unwrap();
information.slots.push(i);
double!(0);
}
}
} else {
unreachable!("Uncaught undefined symbol '{name}'");
}
}
SemanticToken::Padding(value) => {
self.bytecode.resize(i + usize::from(value), 0);
},
SemanticToken::String(bytes) => {
self.bytecode.extend_from_slice(bytes)
},
SemanticToken::BlockOpen(_) => {
self.stack.push(i);
double!(0);
}
SemanticToken::BlockClose(_) => {
let Some(addr) = self.stack.pop() else {
unreachable!("Uncaught unmatched block terminator");
};
let [high, low] = (i as u16).to_be_bytes();
self.bytecode[addr] = high;
self.bytecode[addr+1] = low;
}
}
}
}
pub fn fill_slots(&mut self) {
for information in self.labels.values() {
let [high, low] = (information.address as u16).to_be_bytes();
for addr in &information.slots {
self.bytecode[*addr] = high;
self.bytecode[*addr + 1] = low;
}
}
}
}
|