1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
use crate::*;
use chrono::prelude::*;
pub struct ClockDevice {
pub epoch: Instant,
pub uptime_read: u16,
// End time for each timer as ticks since epoch, zero if not set.
pub t1_end: u64,
pub t2_end: u64,
pub t3_end: u64,
pub t4_end: u64,
// Cached read value for each timer.
pub t1_read: u16,
pub t2_read: u16,
pub t3_read: u16,
pub t4_read: u16,
// Cached write value for each timer.
pub t1_write: u16,
pub t2_write: u16,
pub t3_write: u16,
pub t4_write: u16,
pub wake: bool,
}
impl Device for ClockDevice {
fn read(&mut self, port: u8) -> u8 {
match port {
0x0 => Local::now().year().saturating_sub(2000) as u8,
0x1 => Local::now().month().saturating_sub(1) as u8,
0x2 => Local::now().day().saturating_sub(1) as u8,
0x3 => Local::now().hour() as u8,
0x4 => Local::now().minute() as u8,
0x5 => Local::now().second() as u8,
0x6 => { self.uptime_read = self.uptime() as u16;
read_h!(self.uptime_read) },
0x7 => read_l!(self.uptime_read),
0x8 => { self.read_t1(); read_h!(self.t1_read) },
0x9 => read_l!(self.t1_read),
0xa => { self.read_t2(); read_h!(self.t2_read) },
0xb => read_l!(self.t2_read),
0xc => { self.read_t3(); read_h!(self.t3_read) },
0xd => read_l!(self.t3_read),
0xe => { self.read_t4(); read_h!(self.t4_read) },
0xf => read_l!(self.t4_read),
_ => unreachable!(),
}
}
fn write(&mut self, port: u8, value: u8) -> Option<Signal> {
match port {
0x0 => (),
0x1 => (),
0x2 => (),
0x3 => (),
0x4 => (),
0x5 => (),
0x6 => (),
0x7 => (),
0x8 => write_h!(self.t1_write, value),
0x9 => { write_l!(self.t1_write, value); self.set_t1() },
0xa => write_h!(self.t2_write, value),
0xb => { write_l!(self.t2_write, value); self.set_t2() },
0xc => write_h!(self.t3_write, value),
0xd => { write_l!(self.t3_write, value); self.set_t3() },
0xe => write_h!(self.t4_write, value),
0xf => { write_l!(self.t4_write, value); self.set_t4() },
_ => unreachable!(),
};
return None;
}
fn wake(&mut self) -> bool {
let uptime = self.uptime();
if self.t1_end > 0 && self.t1_end <= uptime {
self.t1_end = 0; self.wake = true; }
if self.t2_end > 0 && self.t2_end <= uptime {
self.t2_end = 0; self.wake = true; }
if self.t3_end > 0 && self.t3_end <= uptime {
self.t3_end = 0; self.wake = true; }
if self.t4_end > 0 && self.t4_end <= uptime {
self.t4_end = 0; self.wake = true; }
return std::mem::take(&mut self.wake);
}
}
impl ClockDevice {
pub fn new() -> Self {
Self {
epoch: Instant::now(),
uptime_read: 0,
wake: false,
t1_end: 0,
t2_end: 0,
t3_end: 0,
t4_end: 0,
t1_read: 0,
t2_read: 0,
t3_read: 0,
t4_read: 0,
t1_write: 0,
t2_write: 0,
t3_write: 0,
t4_write: 0,
}
}
pub fn uptime(&self) -> u64 {
(self.epoch.elapsed().as_nanos() * 256 / 1_000_000_000) as u64
}
/// Duration remaining until the next timer expires, if any timer is set.
pub fn duration_remaining(&mut self) -> Option<Duration> {
let mut end = u64::MAX;
if self.t1_end > 0 { end = std::cmp::min(end, self.t1_end); }
if self.t2_end > 0 { end = std::cmp::min(end, self.t2_end); }
if self.t3_end > 0 { end = std::cmp::min(end, self.t3_end); }
if self.t4_end > 0 { end = std::cmp::min(end, self.t4_end); }
if end != u64::MAX {
let remaining = end.saturating_sub(self.uptime());
Some(Duration::from_nanos(remaining * 1_000_000_000 / 256))
} else {
None
}
}
}
macro_rules! fn_read_timer {
($fn_name:ident($read:ident, $end:ident)) => {
pub fn $fn_name(&mut self) {
let uptime = self.uptime();
if self.$end > uptime {
self.$read = (self.$end.saturating_sub(uptime)) as u16;
} else {
if self.$end > 0 {
self.$end = 0;
self.wake = true;
}
self.$read = 0;
}
}
};
}
macro_rules! fn_set_timer {
($fn_name:ident($write:ident, $end:ident)) => {
pub fn $fn_name(&mut self) {
match self.$write > 0 {
true => self.$end = self.uptime().saturating_add(self.$write as u64),
false => self.$end = 0,
};
}
};
}
impl ClockDevice {
fn_read_timer!{ read_t1(t1_read, t1_end) }
fn_read_timer!{ read_t2(t2_read, t2_end) }
fn_read_timer!{ read_t3(t3_read, t3_end) }
fn_read_timer!{ read_t4(t4_read, t4_end) }
fn_set_timer!{ set_t1(t1_write, t1_end) }
fn_set_timer!{ set_t2(t2_write, t2_end) }
fn_set_timer!{ set_t3(t3_write, t3_end) }
fn_set_timer!{ set_t4(t4_write, t4_end) }
}
|